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LETTER TO THE EDITOR 

On the superfluid transition in dense electron systems 

A V Chubukov and M Yu Kagan 
Institute for Physical Problems, ulica Kosygina 2,117334 Moscow, USSR 

Received 8 February 1989 

Abstract. Kohn's singularity in dense electron systems is shown to give rise to instability 
against Cooper pair formation for large orbital momentum I ,  i.e. for I %- r;':* -while for 
dilute systems ( r , S  1) pairing with 1 = 1 is predicted. 

It has long been known (Kohn and Luttinger 1965) that in dilute Fermi gas the use of an 
expansion for a bare vertex for a Cooper channel in powers of the gas parameter, which 
is entirely appropriate for slow particles in vacuum, becomes inappropriate when the 
fermionic background is taken into account: all the partial components T r  with 1 > 1 (I is 
the orbital momentum of the Cooper pair) prove to be of the same order of magnitude 
and, most importantly, to be negative for large I no matter what the sign of the force 
between the particles on the Fermi surface is. Hence the normal state of the Fermi liquid 
becomes unstable, at some finite temperature, against the formation of Cooper pairs. 
The physical reason for this effect is the screening of the initial interaction due to the 
fermionic background, which results in the appearance of a long-range oscillatory 'tail' 
even if one starts from purely &functional repulsion. In a recent Letter (Chubukov and 
Kagan 1988) we noted that the Kohn-Luttinger mechanism extends right up to 1 = 1 
and, moreover, ir,l turns out to be maximal among all lFll with 12 1; thus the dilute 
Fermi gas with a repulsive potential undergoes a transition to the superfluid state with 
1 = 1. The critical temperature was found to be 

TI 21 &Fexp{-[(5n2/8)/(2 In - 1)]/(apF)2) (1) 

(U > 0 is the scattering length, upF 4 1). If the scattering length is of the same order of 
magnitude as the diameter of the potential yo (V = Vo e-"'o)-that is, if the Born par- 
ameter y = mV0ri/4n is of the order of unity-the corrections to the exponent will be 
small in powers of upF?, while for y G 1, i.e. when a G yo, we must additionally require 
that a p F G  y 2  G 1 because only in this case does the contribution of the second-order 
diagrams to r l  dominate over that of the p harmonics of the initial interaction. 

The purpose of this Letter is to study the consequences of the Kohn-Luttinger effect 
in electron systems. The 'jelly' model in which the electron charge is compensated by 
uniformly spread positive charge will be used. A well known peculiarity of the Coulomb 
interaction is that the electron plasma is more nearly ideal when it is denser; this is why 
the theory is reliable only for high electron densities when r ,  = 1.92/p,aB< 1 (aB = 
(me2)-' is the Bohr radius). For r ,<  1 we can use the Lindhard expression for the 
t For the decreasing potentials V - F a ,  equation (1) is correct for o( > 4 (see Chubukov and Kagaii 1988). 
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Figure 1. Exchange and crossing-type diagrams which give rise to the difference between 
Veff(q = p - k)  and the bare vertex for the Cooper channel. 

dielectric function; this means that we deal only with fast particles, because the Thomas- 
Fermi momentum K = (6Kne2/&~)1’2 is small in comparison with pF when 
r,  < 1 ( ~ ’ / p ;  = 0.65r, < 1) .  Finally, for r, < 1 we need only consider the second-order 
diagrams because the Born parameter y = r:/*/24 -e 1 (the role of V, is played by e2K). 

The Kohn singularities arise from the zero-sound-type loop diagrams. Some parts of 
these diagrams are involved in the screeening of the Coulomb interaction: the singularity 
leads to non-analyticity in E ( q ,  w = 0) and, hence, in Veff(q) when the momentum 
transfer q is close to 2PF: 

The remaining zero-sound-type diagrams cause the difference between Veff(q = p - k )  
and the bare vertex for the Cooper channel. These diagrams are presented as figure 1. 

The broken lines represent Veff(q). All the diagrams contain singularities (non- 
analyticity in the expansion in powers of 8, the angle between the momenta of 
the incoming and outgoing particles) when 8 is close to zero for the first diagram 
and close to 2pF for the others. The fact that for r, < 1 the particles are fast means that 
veff(2PF)/veff(o) = r, < 1. This allows us to single out the first diagram in figure 1 and to 
neglect the other two as well as the non-analytical part of V,,(q). Kohn and Luttinger 
have shown that due to the singularity the partial components of the bare vertex for the 
Cooper channel rl for large 1 drop off as described by a power law, lr4, and not 
exponentially with 1. The exchange type of the first diagram ensures attraction inde- 
pendently of the parity of 1 and for this reason the normal state of the Fermi liquid 
becomes unstable against pairing at T = TI where 

T I  - &F exp(-l/Al) (3) 

AI = (mPF/4.76lr I = [(mpF/4K) veff(0)l * 1-4. (4) 

and 

The calculation of TI demands caution because, rigorously, Veff = Veff(q, w )  and the 
frequency-dependent part of Veffmight be important. However , direct calculation shows 
that for large 1 the typical values of the intermediate momentum are of the order of 
p F / l  while typical frequencies are of the order of so we can proceed to q+ 0, 
assuming o/q + 0. 

For Coulomb interaction Veff(0) = 4.76e2/~* and, accordingly, the quantity ill = 
( ~ / 4 ) ~ 1 - ~  and does not contain any small parameter. Therefore, one can assume the 
transition temperature to be rather high, but unfortunately this is not the case. In fact, 
it is possible to single out the power-law contribution only for 1 + rc1/’ and, as we have 
already mentioned, the typical values of q are of the order of pF/l and going to the q- 
independent limit in (2) is possible only for I + K / P ~  - rf/2. Also, the imposition of the 
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Figure 2. The diagram that gives rise to the singu- 
larity in V,,, in the limit rs 9 1. 

Born approximation condition y < 1 demands an additional increase of I in order to 
ensure the domination of the second-order-diagram contribution (leading to attraction) 
over the repulsive-type contribution from V,, . Simple calculations show that the second- 
order contribution is dominant when 

or when 

which is to say the expression for AI  for r, < 1 of course indirectly contains small par- 
ameters. 

With increasing r, the critical value of I will decrease, thus leading to an increase of 
the transition temperature. 

In real metals 2 s r, G 6. In this case, rigorous calculations cannot be carried out. 
Nevertheless, formally proceeding to the opposite limit, rb+ 1, in the expression (2) 
leads to the condition V,,,(2pF) = 2Veff(0). This allows us to consider the situation 
opposite to the previous one-that is, to suppose as a very crude estimate that the bare 
vertex for the Cooper channel coincides with Veff. The singularity in V,,, arises from the 
diagram representing the creation and annihilation of a virtual electron-hole pair (figure 
2). The singular part of this diagram is proportional to (-l)'+' (Kohn and Luttinger 
1965)-i.e. it promotes attraction for odd values of 1. Numerical calculation shows that 
the contribution from the singular part of V,,, prevails over that from the non-singular 
part right up to 1 = 1, as in the case of weakly non-ideal Fermi gas, and the value of /rl/ 
is maximal; hence, lowering the temperature leads to instability against p pairing. The 
critical temperature is estimated as 

Note that, again, the parameter used in solving the problem does not appear in the final 
result because in this case we are dealing with slow particles and the scattering length 
that appears in the result in the combination up, is again connected with V,,(O); hence 
upF = mpFVeff(0)/4x = x/4. For typical values of the Fermi energy in metals - lo4 K, 
Ti') proves to be lo-* K. A more accurate theory would include the contributions from 
the other diagrams, of exchange and crossing types (see figure l), as well as specification 
of an expression for V,,, (see, for instance, Singwi et ul 1970). 

We would like to express our appreciation to Professor S A F Andreev, Yu M Kagan, 
M I Kaganov, L P Pitaevskii and I A Fomin for helpful discussions and also to A Ja 
Tsalenchuk for assistance with the numerical calculations. 
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